Differential sensitivity to intracellular pH among high- and low-threshold Ca2+ currents in isolated rat CA1 neurons.

نویسندگان

  • G C Tombaugh
  • G G Somjen
چکیده

The effects of intracellular pH (pHi) on high-threshold (HVA) and low-threshold (LVA) calcium currents were examined in acutely dissociated rat hippocampal Ca1 neurons with the use of the whole cell patch-clamp technique (21-23 degrees C). Internal pH was manipulated by external exposure to the weak base NH4Cl or in some cases to the weak acid Na-acetate (20 mM) at constant extracellular pH (7.4). Confocal fluorescence measurements using the pH-sensitive dye SNARF-1 in both dialyzed and intact cells confirmed that NH4Cl caused a reversible alkaline shift. However, the external TEA-Cl concentration used during ICa recording was sufficient to abolish cellular acidification upon NH4Cl wash out. With 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) in the pipette, NH4Cl exposure reversibly enhanced HVA currents by 29%, whereas exposure to Na-acetate markedly and reversibly depressed HVA Ca currents by 62%. The degree to which NH4Cl enhanced HVA currents was inversely related to the internal HEPES concentration but was unaffected when internal ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) was replaced by equimolar bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). When depolarizing test pulses were applied shortly after break-in (Vh = -100 mV), NH4Cl caused a proportionally greater increase in the sustained current relative to the peak. The dihydropyridine Ca channel antagonist nifedipine (5 microM) blocked nearly all of this sustained current. A slowly inactivating nifedipine-sensitive (L-type) HVA current could be evoked from a depolarized holding potential of -50 mV; NH4Cl enhanced this current by 40 +/- 3% (mean +/- SE) and reversibly shifted the tail-current activation curve by +6-8 mV. L-type currents exhibited more rapid rundown than N-type currents; HVA currents remaining after prolonged cell dialysis, or in the presence of nifedipine, inactivated rapidly and were depressed by omega-conotoxin (GVIA). NH4Cl enhanced these N-type currents by 76 +/- 9%. LVA Ca currents were observed in 32% of the cells and exhibited little if any rundown. These amiloride-sensitive currents activated at voltages negative to -50 mV, were enhanced by extracellular alkalosis and depressed by extracellular acidosis, but were unaffected by exposure to either NH4Cl or NaAC. These results demonstrate that HVA Ca currents in hippocampal CA1 neurons are bidirectionally modulated by internal pH shifts, and that N-type currents are more sensitive to alkaline shifts than are L- or T-type (N > L > T). Our findings strengthen the idea that distinct cellular processes governed by different Ca channels may be subject to selective modulation by uniform shifts in cytosolic pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Sensitivity to Intracellular pH Among High- and Low- Threshold Ca Currents in Isolated Rat CA1 Neurons

Tombaugh, Geoffrey C. and George G. Somjen. Differential under both normal and pathological conditions and have sensitivity to intracellular pH among highand low-threshold Ca been observed in many vertebrate species (Caspers and currents in isolated rat CA1 neurons. J. Neurophysiol. 77: 639– Speckmann 1972; Chesler and Kaila 1992; Siemkowicz and 653, 1997. The effects of intracellular pH (pHi) ...

متن کامل

Multiple types of calcium channels in acutely isolated rat neostriatal neurons.

Voltage-activated high- and low-threshold Ca2+ currents were studied using whole-cell voltage-clamp techniques and fura-2 fluorescence measurements of intracellular Ca2+ in neurons acutely isolated from rat neostriatum. High-threshold Ca2+ currents activated around -40 mV and were present in at least 95% of neostriatal neurons. The maximum current, 736 +/- 44 pA (mean +/- SEM, n = 141), was obs...

متن کامل

Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells.

Neuronal Ca2+ influx via NMDA receptors (NMDARs) is essential for the development and plasticity of synapses but also triggers excitotoxic cell death when critical intracellular levels are exceeded. Therefore, finely equilibrated mechanisms are necessary to ensure that NMDAR function is maintained within a homeostatic range. Here we describe a pronounced difference in the modulation of NMDA cur...

متن کامل

Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording

  While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...

متن کامل

Biophysical and pharmacological characterization of voltage-dependent Ca2+ channels in neurons isolated from rat nucleus accumbens.

The nucleus accumbens (NA) has an integrative role in behavior and may mediate addictive and psychotherapeutic drug action. Whole cell recording techniques were used to characterize electrophysiologically and pharmacologically high- and low-threshold voltage-dependent Ca2+ currents in isolated NA neurons. High-threshold Ca2+ currents, which were found in all neurons studied and include both sus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 77 2  شماره 

صفحات  -

تاریخ انتشار 1997